miércoles, 4 de julio de 2012

cts


                                    IMPACTOS AMBIENTALES
 Se puede definir al impacto ambiental como las acciones humanas que producen modificaciones en el ambiente. Esas modificaciones suelen ser desfavorable por el cambio que rompe el equilibrio natural y no se puede revertir el mismo.

                                  IMPACTOS ATMOSFÉRICOS
 Son Causados por la Contaminación atmosférica:
Se entiende por contaminación atmosférica a la presencia en la atmósfera de sustancias en una cantidad que implique molestias o riesgo para la salud de las personas y de los demás seres vivos, vienen de cualquier naturaleza,[1] así como que puedan atacar a distintos materiales, reducir la visibilidad o producir olores desagradables. El nombre de la contaminación atmosférica se aplica por lo general a las alteraciones que tienen efectos perniciosos en los seres vivos y los elementos materiales, y no a otras alteraciones inocuas. Los principales mecanismos de contaminación atmosférica son los procesos industriales que implican combustión, tanto en industrias como en automóviles y calefacciones residenciales, que generan dióxido y monóxido de carbono, óxidos de nitrógeno y azufre, entre otros contaminantes. Igualmente, algunas industrias emiten gases nocivos en sus procesos productivos, como cloro o hidrocarburos que no han realizado combustión completa.
La contaminación atmosférica puede tener carácter local, cuando los efectos ligados al foco se sufren en las inmediaciones del mismo, o planetario, cuando por las características del contaminante, se ve afectado el equilibrio del planeta y zonas alejadas a las que contienen los focos emisores.
La Contaminación puede dividirse en primaria y secundaria
 Los contaminantes primarios son los que se emiten directamente a la atmósfera[] como el dióxido de azufre SO2, que daña directamente la vegetación y es irritante para los pulmones.
Los contaminantes secundarios son aquellos que se forman mediante procesos químicos atmosféricos que actúan sobre los contaminantes primarios o sobre especies no contaminantes en la atmósfera.[2] Son importantes contaminantes secundarios el ácido sulfúrico, H2SO4, que se forma por la oxidación del SO2, el dióxido de nitrógeno NO2, que se forma al oxidarse el contaminante primario NO y el ozono, O3, que se forma a partir del oxígeno O2.
Ambos contaminantes, primarios y secundarios pueden depositarse en la superficie de la tierra por precipitación. El nitrometano es un compuesto orgánico de fórmula química CH3NO2. Es el nitrocompuesto o nitroderivado más simple. Similar en muchos aspectos al nitroetano, el nitrometano es un líquido ligeramente viscoso, altamente polar, utilizado comúnmente como disolvente en muchas aplicaciones industriales, como en las extracciones, como medio de reacción, y como disolvente de limpieza. Como producto intermedio en la síntesis orgánica, se utiliza ampliamente en la fabricación de productos farmacéuticos, plaguicidas, explosivos, fibras, y recubrimientos. También se utiliza como combustible de carreras de coches modificados para sufrir grandes aceleraciones (dragsters), y en motores de combustión interna usados para coches en miniatura, por ejemplo, en los modelos de radio-control.



Cuando los contaminantes llegan al medio empiezan a reconocerse el impacto causado:
Deposición seca o húmeda e impactar en determinados receptores, como personas, animales, ecosistemas acuáticos, bosques, cosechas y materiales. En todos los países existen unos límites impuestos a determinados contaminantes que pueden incidir sobre la salud de la población y su bienestar.
En España existen funcionando en la actualidad diversas redes de vigilancia de la contaminación atmosférica, instaladas en las diferentes Comunidades Autónomas y que efectúan medidas de una variada gama de contaminantes que abarcan desde los óxidos de azufre y nitrógeno hasta hidrocarburos, con sistemas de captación de partículas, monóxido de carbono, ozono, metales pesados, etc.
 
                                  Lluvia ácida
    ¿Por qué se produce?
La lluvia ácida se forma cuando los hidrocarburos y el carbón usados como fuente de energía, en grandes cantidades, producen  óxidos de azufre y nitrógeno y el dióxido de azufre emitidos por fábricas, centrales eléctricas y vehículos que queman carbón o productos derivados del petróleo. Estos contaminantes que escapan a la atmósfera (al quemarse carbón y otros componentes fósiles), reaccionan con el agua y los oxidantes de la atmósfera y se transforman químicamente en ácido sulfúrico y nítrico. Los compuestos ácidos se precipitan entonces a la tierra en forma de lluvia, nieve o niebla, o pueden unirse a partículas secas y caer en forma de sedimentación seca.
Los contaminantes atmosféricos primarios que dan origen a la lluvia ácida pueden recorrer grandes distancias, siendo trasladados por los vientos cientos o miles de kilómetros antes de precipitar en forma de rocío, lluvia, llovizna, granizo, nieve, niebla o neblina. Cuando la precipitación se produce, puede provocar importantes deterioros en el ambiente.



¿Cuáles son sus efectos?
La acidificación de las aguas de lagos, ríos y mares dificulta el desarrollo de vida acuática en estas aguas, lo que aumenta en gran medida la mortalidad de peces. También, produce el deterioro de la superficie de los materiales y afecta directamente a la vegetación, por lo que produce daños importantes en las zonas forestales.
La lluvia ácida por su carácter corrosivo, corroe las construcciones y las infraestructuras como monumentos y edificaciones construidas con mármol o caliza. Un efecto indirecto muy importante es que los protones, H+, procedentes de la lluvia ácida arrastran ciertos iones del suelo. Por ejemplo, cationes de hierro, calcio, aluminio, plomo o zinc. Como consecuencia, se produce un empobrecimiento en ciertos nutrientes esenciales y el denominado estrés en las plantas, que las hace más vulnerables a las plagas.
Un estudio realizado en 2005 por Vincent Gauci sugiere que cantidades relativamente pequeñas de sulfato presentes en la lluvia ácida tienen una fuerte influencia en la reducción de gas metano producido por metanógenos en áreas pantanosas, lo cual podría tener un impacto, aunque sea leve, en el efecto invernadero.
Para reducir  la emisión de los contaminantes precursores  se debe reducir el nivel máximo de azufre en diferentes combustibles, impulsar el uso del gas natural en industrias, ampliar el sistema de transporte eléctrico, no agregar muchas sustancias químicas en los cultivos y controlar las condiciones de combustión (temperatura, oxigeno, etc.).

      

                             Efecto Invernadero.
El efecto invernadero es un fenómeno por el cual determinados gases, que son componentes de la atmósfera, retienen parte de la energía que la superficie  emite por haber sido calentada por la radiación estelar. En la atmósfera el mantenimiento del equilibrio entre la recepción de la radiación solar y la emisión de radiación infrarroja devuelve al espacio la misma energía que recibe del Sol se llama balance energético de la Tierra y permite mantener la temperatura en un estrecho margen que posibilita la vida. Para mantenerse en equilibrio la radiación solar entrante en la atmósfera debe estar compensada por la radiación saliente. Pues si la radiación entrante fuese mayor que la radiación saliente se produciría un calentamiento y lo contrario produciría un enfriamiento.
Los flujos de energía entrante y saliente interaccionan en el sistema climático ocasionando muchos fenómenos tanto en la atmósfera, como en el océano o en la tierra. Así la radiación entrante solar se puede dispersar en la atmósfera o ser reflejada por las nubes. La superficie terrestre puede reflejar o absorber la energía solar que le llega. Esta energía  de onda corta se transforma en la Tierra en calor, ya sea calor sensible o calor latente que se puede almacenar durante algún tiempo, transportarse en varias formas, dando lugar a una gran variedad de tiempo y a fenómenos turbulentos en la atmósfera o en el océano. Finalmente vuelve a ser emitida a la atmósfera como energía radiante de onda larga
Aunque la atmósfera seca está compuesta prácticamente por nitrógeno, oxígeno y argón, son gases muy minoritarios los que desarrollan esta actividad radiactiva como el dióxido de carbono, el ozono y otros. Además, la atmósfera contiene vapor de agua que también es un gas radiactivamente activo, siendo con diferencia el gas natural invernadero más importante.

Los denominados gases de efecto invernadero o gases invernadero, responsables son:
Si bien todos ellos (salvo los CFC) son naturales, se han producido incrementos en las cantidades de óxido de nitrógeno y dióxido de carbono emitidas a la atmósfera y han limitado la capacidad de la atmósfera para eliminar el dióxido de carbono, debido a actividades como la deforestación y el uso intensivo de combustibles fósiles en las actividades industriales y el transporte.
           Destrucción de la Capa de Ozono
La capa de ozono nos protege de los rayos ultravioleta. Actualmente, está siendo destruida producto de sustancias fabricadas y emitidas por el hombre. Esto constituye un factor que contribuye al cambio climático, llamado "Calentamiento Global".
Los Efectos que el hombre ha ejercido en la Atmósfera, a partir de la Revolución Industrial, han significado drásticos y perceptibles cambios en su composición, amenazando todo el Biosistema. El ozono, ubicado en la Estratosfera como capa entre 15 y 30 km. de altura, se acumula en la atmósfera en grandes cantidades, y se convierte en un escudo que nos protege de la radiación ultravioleta que proviene del sol haciendo posible la vida en la tierra. El Gas Ozono está en un continuo proceso de formación y destrucción, ya que al poseer tres átomos de Oxígeno que se liberan a la atmósfera siempre uno de ellos se une a una molécula de Oxígeno y forma nuevamente Ozono, este último, después de absorber rayos UV se divide formando una molécula de oxígeno y liberando un átomo de oxígeno, proceso cíclico que se repite constantemente.

            Espectro de la irradiación solar en la parte superior de la atmósfera
Radiación solar: es el conjunto de radiaciones electromagnéticas emitidas por el Sol. El Sol es una estrella que se encuentra a una temperatura media de 6000 K en cuyo interior tienen lugar una serie de reacciones que producen una pérdida de masa que se transforma en energía. Esta energía liberada del Sol se transmite al exterior mediante la radiación solar. El Sol se comporta prácticamente como un cuerpo negro el cual emite energía siguiendo la ley de Planck a la temperatura ya citada. La radiación solar se distribuye desde el infrarrojo hasta el ultravioleta. No toda la radiación alcanza la superficie de la Tierra, porque las ondas ultravioletas más cortas, son absorbidas por los gases de la atmósfera El nivel excesivo de la radiación UV (especialmente la A y la B) que llegue a la superficie de la Tierra puede perjudicar la salud de las personas, en patologías como: aparición de cáncer de piel; lesiones en los ojos que producen: cataratas, la deformación del cristalino o la presbicia; y deterioro del sistema inmunológico, influyendo de forma negativa sobre la molécula de ADN donde se ven afectadas las defensas del cuerpo, las cuales generan un aumento en las enfermedades infecciosas, que pueden aumentar tanto en frecuencia como en severidad, tales como: sarampión, herpes, malaria, lepra, varicela. A nivel de fauna, el aumento de los rayos UV daña a los ecosistemas acuáticos se ha visto que el daño en algunas zonas de aguas claras alcanza hasta 20 mts. de profundidad, siendo su consecuencia la pérdida de fitoplancton (base de la cadena alimenticia marina). Esto es muy perjudicial, porque una disminución en la cantidad de organismos puede provocar una reducción de los peces y afectar el resto de la cadena trófica.

Efectos de la radiación solar sobre los gases atmosféricos
La atmósfera es diatérmana es decir, que no es calentada directamente por la radiación solar, sino de manera indirecta a través de la reflexión de dicha radiación en el suelo y en la superficie de mares y océanos.
  • Los fotones según su energía o longitud de onda son capaces de:
    • Fotoionizar la capa externa de electrones de un átomo (requiere una longitud de onda de 0,1 micra).
    • Excitar electrones de un átomo a una capa superior (requiere longitudes de onda entre 0,1 de micra y 1 micra).
    • Disociar una molécula (requiere longitudes de onda entre 0,1 de micra y 1 micra).
    • Hacer vibrar una molécula (requiere longitudes de onda entre 1 micra y 50 micras).
    • Hacer rotar una molécula (requiere longitudes de onda mayores que 50 micras).
La energía solar tiene longitudes de onda entre 0,15 micras y 4 micras por lo que puede ionizar un átomo, excitar electrones, disociar una molécula o hacerla vibrar.
La energía térmica de la Tierra (radiación infrarroja) se extiende desde 3 micras a 80 micras por lo que sólo puede hacer vibrar o rotar moléculas, es decir, calentar la atmósfera.


La mejor forma de asumir una actitud responsable es el fomento y el desarrollo de una educación sustentada en valores y principios ambientales para que nuestras generaciones futuras puedan disfrutar de este maravilloso planeta llamado Tierra. Radiación solar en el planeta tierra la mayor parte de la energía que llega a nuestro planeta procede del Sol. El Sol emite energía en forma de radiación electromagnética. Estas radiaciones se distinguen por sus diferentes longitudes de onda. Algunas, como las ondas de radio, llegan a tener longitudes de onda de kilómetros, mientras que las más energéticas, como los rayos X o las radiaciones gamma tienen longitudes de onda de milésimas de nanómetro.  Radiación ultravioleta es la radiación ultravioleta de menor longitud de onda (360 nm), lleva mucha energía e interfiere con los enlaces moleculares. Especialmente las de menos de 300 nm que pueden alterar las moléculas de ADN, muy importantes para la vida. Estas ondas son absorbidas por la parte alta de la atmósfera, especialmente por la capa de ozono. Es importante protegerse de este tipo de radiación ya que por su acción sobre el ADN está asociada con el cáncer de piel. Sólo las nubes tipo cúmulos de gran desarrollo vertical atenúan éstas radiaciones prácticamente a cero. El resto de las formaciones tales como cirrus, estratos y cúmulos de poco desarrollo vertical no las atenúan, por lo cual es importante la protección aún en días nublados. Es importante tener especial cuidado cuando se desarrollan nubes cúmulos, ya que éstas pueden llegar a actuar como espejos y difusores e incrementar las intensidades de los rayos ultravioleta y por consiguiente el riesgo solar. Algunas nubes tenues pueden tener el efecto de lupa.

 

 Contaminación Solar y su  Comportamiento con respecto la atmósfera y el suelo frente a la radiación:

La atmósfera terrestre está compuesta por numerosas partículas de materia, presenta unos 10.000 km de altura y se divide en diferentes capas concéntricas:

Troposfera

Es la zona inferior de la atmósfera que se extiende desde el nivel del mar hasta unos 16 Km. Es una capa muy densa, en ella se encuentran más de las ¾ partes del aire de la atmósfera, además contiene mucho vapor de agua condensado en forma de nubes, y gran cantidad de polvo. A ella llegan la luz visible y los rayos UV que logran atravesar el resto de las capas de la atmósfera. Es la primera capa que queda en contacto con la corteza terrestre.

Estratosfera

Tiene un espesor aproximado de 60 Km y se encuentra por encima de la troposfera. Es una capa tenue donde los vapores de agua y polvo disminuyen bastante con relación a los encontrados en la troposfera. En esta zona es abundante la concentración de anhídrido carbónico (CO2) que tiene la propiedad de evitar el paso de las irradiaciones a la Tierra. Hacia el medio de la estratosfera se encuentra una capa de unos 15 Km de espesor con abundante ozono, que algunos autores denominan ozonosfera, es la capa que absorbe casi toda la radiación ultravioleta proveniente del Sol. El ozono, O3, absorbe con gran eficacia las radiaciones comprendidas entre 200 y 330 nm, por lo que la radiación ultravioleta de menos de 300 nm que llega a la superficie de la Tierra es insignificante.

Mesosfera

Presenta alrededor de unos 20 Km de espesor. Sus capas superiores presentan abundantes concentraciones de sodio. La temperatura en esta capa se encuentra entre -70 y 90 °C. En ella se encuentra la capa D, que tiene la propiedad de reflejar las ondas largas de radio durante el día y desaparece durante la noche. Esta es la causa por la cual las ondas medias son interrumpidas durante el día y puedan reanudarse una vez que se pone el Sol. Al desaparecer la capa D, permite seguir el paso de las otras ondas hacia las capas superiores.

Ionosfera

Es una zona parcialmente ionizada de radiaciones solares, de gran conductividad eléctrica. En esta capa se reflejan hacia la tierra las ondas de radio, por lo que es de gran utilidad en las telecomunicaciones.